
PROTECTING COLLABORATION

Gio Wiederhold�

Stanford University, CA

Michel Bilello

Stanford University, CA

Vatsala Sarathy

Oracle Corp., Redwood City, CA

XiaoLei Qian

SRI International, Menlo Park, CA

June 26, 1996

Abstract

The TIHI (Trusted Interoperation of Healthcare Information) project addresses a security

issue that arises when some information is being shared among collaborating enterprises, although

not all enterprise information is sharable. It assumes that protection exists to prevent intrusion

by adversaries through secure transmission and �rewalls. The TIHI system design provides

a gateway, owned by the enterprise security o�cer, to mediate queries and responses. The

enterprise policy is determined by rules provided to the mediator. We show examples of typical

rules. The problem and our solution applies not only to a healthcare setting, but is equally valid

among collaborating enterprises and in many military situations.

1 Introduction

We address an issue in the protection of information that is starting to arise as the basic infrastructure
for secure transmission and storage enters into practice. We assume an environment where encrypted
transmission, �rewalls, passwords, and private and public keys provide adequate protection from
adversaries. The problem which remains, and addressed here, is now to enable selective sharing of
information with collaborators, without the risk of exposing related information in one's enterprise
domain or enclave that needs to be protected [1]. We will �rst sketch some examples to clarify the
problem and then formulate the informal model for our work.

In a hospital the medical record system collects a wide variety of information on its patients. Most
information on a patient must be accessible to the treating healthcare personnel, including community
physicians, and a substantial fraction to the hospital billing clerks [2]. Similar data are requested
by insurance companies, and certain data and summarization are due for hospital accreditation and
public health monitoring. Results for all of these customers must be handled distinctly.

In a manufacturing company collaborations are often formed with suppliers and marketing organ-
izations. Such virtual enterprises are formed to design, assemble, and market some speci�c products.
Design speci�cations and market intelligence must be rapidly shared to remain competitive. These
collaborations overlap, producing security problems which are stated to be the primary barrier to
the acceptance of this approach [3]. Uncontrolled sharing of proprietary data is too risky for a man-
ufacturer to grant a supplier. The supplier will also be wary of giving information to the customers.

In a joint military action situation, information must be shared from a variety of sources with
a variety of forces, one's own and allies'. The source information ranges from current force status,
logistics backup, to intelligence about the opponents. While opponents should be denied all inform-
ation, not all of one's troops are authorized to access intelligence sources, and one's allies may be
further restricted.

�Supported by NSF grant ECS-94-22688

These three scenarios have the following commonality.

1. We are dealing with friends, not enemies, and should provide relevant information expeditiously.

2. The collected information is not organized according to the needs of a security protocol.

3. It is impossible to rigorously classify the data, a priori, by potential recipient.

4. It cannot be fully determined from the query whether the results combine information which
should be withheld.

For instance, a medical record on a cardiac patient can include notations that would reveal a
diagnosis of HIV, which should not be widely revealed, and withheld from cardiology researchers.
A design document on a plastic component, to be outsourced, also indicates the incorporation of
a novel component supplied by another manufacturer, which provides a competitive advantage.
Military planning information indicates intelligence sources which are not to be made public to one's
allies.

Our model formalizes the role of a security o�cer who has the responsibility and the authority to
assure that no inappropriate information leaves an enterprise domain. A �rewall protects the domain
vis-a-vis invaders. Distinct gateways, each owned and controlled by a security o�cer, provide the
only legitimate pathways out of, and into, the domain. This gateway is best envisaged as a distinct
computer system; we refer to such a system as a \security mediator", placed as sketched in Figure 1.
In the security mediator the policies set by the enterprise on security and privacy are implemented,
under control of, and through interaction with the security o�cer. Databases and �les within the
domain can provide services and meta-data to help the activities of the security mediator, but cannot
be fully trusted. The security mediator is able to use secure communication and authentication of
outside requests.

Network

hospital /hospital /
factoryfactory

insurance co.insurance co.
/ supplier/ supplier

T’s securityT’s security
 mediator mediator

S’ securityS’ security
 mediator mediator

encryptedencrypted
messagemessage

 Domain T Domain T
securesecure @@level TTlevel TT Domain S Domain S

securesecure @@level SSlevel SS

Security officerSecurity officer

Figure 1: Security mediator setting.

It is important to recognize, as sketched in Figure 2, that validation of communication content
must occur both with respect to the query and the responses. For instance, it is inadequate to allow a
validated researcher in cardiac diseases to receive all records on cardiac patients, if that also includes
HIV cases. Depending on institutional policy, such cases will be omitted or sanitized.

Database

DB schema-
 based
 control

Authentication
 based
 controlgood/bad

Security officer

Database
adminis-
trator

?

performance,
function requests

security
needs

 result is
likely ok

validated
to be ok

 anciliary
information

:-(

prior use

 Security Mediator

good guy

good
query

processable query

his-
tory

Figure 2: Paths to be checked.

2 System Design

The mediator system consists of modules that performs the following tasks:

� Processing of query (pre-processing)

� Communication with databases (submission of query and retrieval of results)

� Processing of results (post-processing)

� Writing into a log �le

The mediator is designed to safeguard the privacy of the data. There is a two-way fence inside
the mediator that intercepts queries coming in and, likewise, results going out. Corresponding to
each side of the fence is a set of rules that assesses the legitimacy of queries and results respectively.
When a query is sent by a user from the outside world, the mediator applies a set of rules to ensure
the query's validity. For example, in a medical application, the mediator will obviously prevent those
queries requesting patient names, social security numbers, etc.

The rule system permits fully validated requests and/or validated responses to pass without
direct interaction by the security o�cer, but any other request or response will be presented to the
security o�cer. The security o�cer then decides whether the request can still be granted. If the

results of a query are rejected for rule violation, they are sent to the security o�cer along with the
query and the identity of the user who originated it. If a result should contain information that is
questionable, then it is passed to the security o�cer, who can approve it, edit it prior to approval,
or reject it.

The rules balance the need for preserving data privacy and for making data available. Data which
is too tightly controlled would be less available and useful for outside users. Conversely, a su�cient
level of protection of data privacy must be maintained.

The mediator system can operate fully interactively or partially automatically. A reasonable
goal is the automatic processing of say, 90% of queries and 95% responses, but even a fully manual
system will provide bene�ts, as summarized in the conclusions. Even when operating automatically,
the security mediator remains under the security o�cer's control. It does not function like a \black
box" but rather keeps the security o�cer involved in its operation. For example, rules are modi�able
by the security o�cer at all times. In addition, daily logs are accessible to the o�cer, who can then
keep track of the transactions.

The mediator system and the databases typically reside on di�erent machines. Thus, since all
queries are processed by the mediator, the database need not be multi-level secure unless it operates
in a particularly high security setting.

3 The Rule System

In order to automate the process of controlling access and ensuring the security of information, the
security o�cer must enter rules into the system. The security mediator uses these rules to determine
the validity of every query and make valuable decisions pertaining to the dissemination of information.
The system helps the security o�cer enter appropriate rules and update them as the security needs
of the organization change.

The rules are simple, short and comprehensive. They are stored in the database with all edit
rights restricted to the security o�cer. If no rules are entered into the database, then the system
operates in the manual default mode, whereby access is still possible but all queries and responses
pass via the security o�cer. Some rules may be related to others, in which case the most restrictive
rule automatically applies. The rules may pertain to users, sessions, tables or any combinations of
these.

Once they are entered into the system by the o�cer, all the rules will be checked for every query
issued by the user in every session. All applicable rules will be enforced for every user and the query
will be forwarded only if it passes all tests. Unless a rule permits explicit pass through, it goes to the
security o�cer. In the event a rule is violated by a query, the error message will be directed to the
security o�cer and not to the end user. Thus, in such cases, the users will not see the error message.
This is necessary because even error messages could be interpreted and meaningful inferences could
be made, or the user could rephrase the query to bypass the error. The errors as well as all queries
will be logged by the system for audit purposes.

Because the results retrieved for a given query can be highly unpredictable, it is not su�cient
to validate queries. Thus, even when the query has been validated, the results are also subject to
screening by a set of rules. As before, all rules are enforced for every user and the results are
accessible only if they pass all tests. Also, if the results violate a rule, an error message is sent to
the security o�cer but not to the user.

Not only are the rules easy to comprehend and to enter into the system, they are also powerful
enough to enable the o�cer to specify requirements and criteria accurately, so that whenever users
may see all information, they should be allowed to do so and whenever information is restricted, they
should not have access to it. The users in the system are grouped as cliques and rules may apply to
one or more cliques. The security o�cer has the authority to add or delete users from cliques and to
create or drop cliques. Similarly, columns in tables can be grouped into segments and query/results

validations could be performed on segments.
The rules can be classi�ed as set-up or maintenance rules, pre-processing (query) rules and

post-processing (result) rules. Some rules may be both pre- and post-processing rules. Examples
of pre-processing rules include number of queries per session for the clique, session time, session
hours, statistical query only, etc. Post-processing rules include minimum rows retrieved, session
time, intersection of queries, user hours, vocabulary matching. A more comprehensive list of rules
can be found in appendix. The rule type is indicated in parenthesis.

3.1 Application of rules

The following sequence of rules is applied for every request.

� When the user enters a query, the mediator parses the query. If parsing is not successful, an
error message is sent out to the security o�cer.

� Next, the security mediator checks to see if the user belongs to a clique. If not, an error message
is sent to the security o�cer.

� Then, it checks to see if access to all the columns speci�ed in the SELECT and WHERE clauses
in any segment is permitted to the members of the clique. If not, an error message is sent to
the security o�cer.

� It then looks at every rule in the system of type pre-processing and validates the query against
each. If any rule is violated, an error message is sent to the security o�cer.

At this point, the query is actually processed and results are obtained by the mediator.

� Now the post-processing rules are applied.

� On textual results, rules may specify that all words must come from a speci�ed vocabulary.
Any unknown term will be presented, with surrounding context, to the security o�cer, and if
not approved, no result will be returned.

� Security o�cers can edit documents brought to their attention before releasing them. That
should include `whiteing-out' portion of graphics and design drawings.

� Lastly, further result modi�cation is done as speci�ed by the rules. Operations that can be
invoked include random falsi�cation of data and aggregation.

� Now the results are sent back to the user. Then the mediator updates internal statistics such
are number of queries for the session, duration of the session, etc. It also updates the log �les
appropriately. This last step is done in all cases, whether or not there were errors.

4 View-Based Access Control

Most databases in place today were originally developed for internal use only. The security mech-
anisms available in these systems are intended for access by only a known, controllable, observable,
and predominantly loyal internal user population, rather than unknown, unseen, and potentially ad-
versarial external user populations [4]. Consequently, while internal access control based on user
discretion might be satisfactory, external access control should support mandatory enforcement,
before an enterprise can comfortably share its data with other partners in a collaboration.

Notice that the tables referred to in rules do not have to be base relations. They can be derived
relations or views de�ned by arbitrary SQL queries. Hence, the set of rules collectively speci�es a
view-based access control policy.

Views in relational databases have long been considered ideal as the objects of access control,
because they have a higher degree of logical abstraction than physical data and hence enable content-
based or context-based security, as opposed to container-based security provided in operating sys-
tems.

View-based access control in relational databases was �rst introduced in IBM's System R [5],
in which views expressed in SQL are the objects of authorization. It has been adopted by most
commercial relational DBMSs. However, view-based mandatory access control has not been in wide-
spread use because of the safety problem [6]. The safety question asks the following. Is there a
database state in which a particular user possesses a particular privilege for data in a speci�c view?
In container-based access control, di�erent containers do not share contents. Hence, a secret label
on a container guarantees that data in the container are not accessible to unclassi�ed users. In
view-based access control however, views might overlap because the same data might satisfy more
than one view. Hence, a secret label on a view does not guarantee that data contained in the view
are not accessible to unclassi�ed users.

To support view-based mandatory access control, queries have to be analyzed and answers have to
be �ltered to ensure that data in a view are accessible by all and only those users who are authorized
to access the view. We envision two types of query analysis.

1. Analysis of single queries. A query should be su�ciently constrained such that it only accesses
those views to which the issuer of the query has authorization.

2. Analysis of a sequence of queries. A sequence of queries by the same issuer should be su�ciently
constrained such that the issuer cannot compute, from the sequence of answers, data in views
to which he does not have authorization.

4.1 Single Queries

The easiest way of enforcing mandatory access control is of course to require that a query be for-
mulated in terms of those views to which the issuer of the query has authorization. For example,
suppose that the following view is de�ned:

CREATE VIEW Drug Allergy (patient name, drug name, notes)
SELECT Patients.name, Drugs.name, Allergy.text
FROM Patients, Drugs, Allergy
WHERE Patients.id = Allergy.patient id
AND Drugs.id = Allergy.drug id

on which the following rules are speci�ed:

CREATE CLIQUE X
ADD USER John Doe X
LIMIT X Drug Allergy.

Then queries issued by user John Doe have to be formulated in terms of the view Drug Allergy. For
example, the following query by John Doe will be rejected by the security mediator,

SELECT Patients.name, Allergy.text
FROM Patients, Drugs, Allergy
WHERE Patients.id = Allergy.patient id
AND Drugs.id = Allergy.drug id

Drugs.name = xd 2001

even though it is equivalent to the following query, which will be accepted by the security mediator.

SELECT patient name, notes
FROM Drug Allergy
WHERE drug name = xd 2001.

Therefore, the security mediator should not base acceptance decision of a query on the condition
that the issuer of the query has authorization to all relations mentioned in the query, base or derived.
Instead, the security mediator should try to reformulate the query using those views that the issuer
of the query has authorization. If a reformulation is possible, then the reformulated query will be
evaluated in place of the original query. Otherwise the original query is rejected. This approach will
also facilitate the evolution of the security policy enforced by the security mediator.

4.2 Sequence of Queries

Access control on a per-query basis might not be su�cient. Even when a user has authorization to
every query issued, he might be able to combine answers from a sequence of queries to derive data
in a view to which he does not have access authorization. Such scenarios necessitate the need for
the security mediator to keep track of the access history for every clique/user. For example, even if
user John Doe is not authorized to access the view Drug Allergy, he could issue the following two
queries, assuming that he is authorized to both, and obtain data contained in the view Drug Allergy.

SELECT Allergy.patient id, Allergy.drug id, Patients.name, Allergy.text
FROM Patients, Allergy
WHERE Patients.id = Allergy.patient id.

SELECT Allergy.patient id, Allergy.drug id, Drugs.name, Allergy.text
FROM Drugs, Allergy
WHERE Drugs.id = Allergy.drug id.

A critical issue in analyzing a sequence of queries is what we can assume about the computational
capability of the user in combining the sequence of answers. For the above example, John Doe has
to be able to perform join over the answers of the two queries in order to compromise the view
Drug Allergy. A reasonable assumption is that users have the same computational capability as in
single queries. In other words, if users can issue project-select-join queries, then they can perform
project, select, and join operations on a sequence of answers.

Another important problem is when queries are interleaved with updates, because even though
John Doe might have already accessed a portion of the data in the view Drug Allergy, say the �rst
query above, enough time might have elapsed before he issues the second query above that the join
between the two answers is empty. This could happen if for example the base relation Allergy only
contains data for the most recent month, and John Doe waited over a month to ask the second query.
In this case, the history log for queries on relation Allergy could safely be bound to one month.

Therefore, the security mediator should try to reformulate the view Drug Allergy that John Doe
is not authorized to using queries issued by John Doe. If a reformulation is possible, then the security
policy on Drug Allergy is violated.

5 Conclusion

We are addressing privacy and security maintenance in collaborative settings, where information has
to be selectively protected from colleagues, rather than withheld from enemies. The problem only
arises once a basic secure infrastructure is established. Today, privacy protection in healthcare is
preached, but ignored in practice, putting many institutions at risk. In crucial settings, corporate
and military security o�cers control input and output, but do so on paper, so that interactions are
typically delayed by weeks, and high costs are incurred due to delays and misunderstandings. The

primary barrier, as stated in [3], to the realization of virtual enterprises is `Insu�cient security con-
trols. The corporations participating in a virtual enterprise are independent and frequently compete
against one another'.

✪ Be helpful to customer

✪ Tell cust. re problems,
 query may be fixed

➲ Be helpful to security officer

➲ Tell cust. re problems,
 sec. off may contact cust.

✪ Exploit DB meta-data

✪ Isolate transactions

✪ Ship result to customer

➲ Exploit customer info.

➲ Use history of usage

➲ Ship result to sec. off.
 with result description

 (source, cardinality)

Figure 3: Di�erences in mediation for queries and for protection.

The approach we are developing provides tools for a security o�cer. Database systems have
provided tools to control queries, under the aegis of the database administrator. We illustrated
above that query-only tools are inadequate in complex settings, and we emphasized the need for view-
based access control. In addition, the major role of a database administrator is to help customers get
maximal relevant data, a task that often con
icts with security concerns as illustrated in Figure 3.
Furthermore, the majority of data is not in database systems that provide security, and even less
resides in costly, validated multi-level secure systems.

The concept of security mediator as an intelligent gateway protecting a well-de�ned domain is
clear, simple, and the cost of modern workstations make it feasible to assign such a tool to a security
o�cer. Like most security measures, the security mediator cannot o�er a 100% guarantee, especially
with respect to statistical data security. But having a focused node, with a complete log of requests
and responses, and an incrementally improving rule collection, provides a means to ratchet protection
to a level that serves the enterprise needs and policies e�ectively.

Examples of Rules

Rule Remarks

1. set logfile "x" (Set up) The table or path name to the log �le

2. create clique x (Set up) Create a clique of users called x

3. add user user name clique name (Set up) add user called user name to clique name

4. delete user user name clique name (Set up)

5. drop clique x (Set up)

6. create segment segment name (Set up)

7. set stat only true/false (Pre) Only statistical info (average, median)

allowed

8. set clique stat only true/false (Pre) Only statistical info (average, median)

allowed for user

9. set segment stat only true/false (Pre) Only statistical info (average, median)

allowed for queries on given table

10. set user table stat only true/false (Pre) Only statistical info (average, median)

allowed for user, table combination

11. limit queries per session x (Pre) Number of queries allowed in a session

12. limit clique queries x (Pre) For a given user, number of queries

allowed per session

13. limit clique segment (Pre) limit all users in clique to columns/tables

in segment. This speci�es explicit pass

through of results.

14. set random on/off (Post) Random falsi�cation of data to be

performed or not

15. set random on/off clique (Post) Random falsi�cation of data to be

performed or not for user

16. set random on/off segment (Post) Random falsi�cation of data to be

performed or not for queries on given table

17. set user table random on/off (Post) Random falsi�cation of data to be

performed or not for user/table combination

18. limit min rows retrieved x (Post) Minimum number of matching rows for

a given selection criterion

19. limit clique min rows x (Post) Minimum rows retrieved for a query by

a given user

20. limit segment num queries x (Post) Number of queries allowed on a given table

21. limit clique segment num queries x (Post) Number of queries allowed on a given

table for a given user

22. limit intersection x (Post) No two queries can have an intersection

greater than x rows

23. limit clique intersection x (Post) No two queries by user can have an

intersection greater than x rows

24. limit segment intersection x (Post) No two queries on table can have an

intersection greater than x rows

References

[1] D. Randolph Johnson, Fay F. Sayjdari, and John P. Van Tassell. Missi security policy: A formal
approach. Technical Report R2SPO-TR001-95, National Security Agency Central Service, July
1995.

[2] Bill Braithwaite. National health information privacy bill generates heat at scamc. Journal of

the American Informatics Association, 3(1):95{96, Jan/Feb 1996.

[3] Martin Hardwick, David L. Spooner, Tom Rando, and KC Morris. Sharing manufacturing in-
formation in virtual enterprises. Comm. ACM, 39(2):46{54, February 1996.

[4] G. Rettig. Use of multi-level secure systems in commercial environments. January 1991.

[5] P. P. Gri�ths and B. W. Wade. An authorization mechanism for a relational database system.
ACM Transactions on Database Systems, 1(3):242{255, September 1976.

[6] M. Schaefer and G. Smith. Assured discretionary access control for trusted RDBMS. In Pro-

ceedings of the Ninth IFIP WG 11.3 Working Conference on Database Security, pages 275{289,
1995.

